Gonna-Lift-Them-All
2 minutos de lectura
Se nos proporciona el siguiente código en Python para cifrar la flag:
from Crypto.Util.number import bytes_to_long, getPrime
import random
FLAG = b'HTB{??????????????????????????????????????????????????????????????????????}'
def gen_params():
p = getPrime(1024)
g = random.randint(2, p-2)
x = random.randint(2, p-2)
h = pow(g, x, p)
return (p, g, h), x
def encrypt(pubkey):
p, g, h = pubkey
m = bytes_to_long(FLAG)
y = random.randint(2, p-2)
s = pow(h, y, p)
return (g * y % p, m * s % p)
def main():
pubkey, privkey = gen_params()
c1, c2 = encrypt(pubkey)
with open('data.txt', 'w') as f:
f.write(f'p = {pubkey[0]}\ng = {pubkey[1]}\nh = {pubkey[2]}\n(c1, c2) = ({c1}, {c2})\n')
if __name__ == "__main__":
main()
También tenemos la salida del script:
p = 163096280281091423983210248406915712517889481034858950909290409636473708049935881617682030048346215988640991054059665720267702269812372029514413149200077540372286640767440712609200928109053348791072129620291461211782445376287196340880230151621619967077864403170491990385250500736122995129377670743204192511487
g = 90013867415033815546788865683138787340981114779795027049849106735163065530238112558925433950669257882773719245540328122774485318132233380232659378189294454934415433502907419484904868579770055146403383222584313613545633012035801235443658074554570316320175379613006002500159040573384221472749392328180810282909
h = 36126929766421201592898598390796462047092189488294899467611358820068759559145016809953567417997852926385712060056759236355651329519671229503584054092862591820977252929713375230785797177168714290835111838057125364932429350418633983021165325131930984126892231131770259051468531005183584452954169653119524751729
(c1, c2) = (159888401067473505158228981260048538206997685715926404215585294103028971525122709370069002987651820789915955483297339998284909198539884370216675928669717336010990834572641551913464452325312178797916891874885912285079465823124506696494765212303264868663818171793272450116611177713890102083844049242593904824396, 119922107693874734193003422004373653093552019951764644568950336416836757753914623024010126542723403161511430245803749782677240741425557896253881748212849840746908130439957915793292025688133503007044034712413879714604088691748282035315237472061427142978538459398404960344186573668737856258157623070654311038584)
Analizando operaciones matemáticas
Vamos a expresar los pasos del cifrado en términos matemáticos:
$$ s = h ^ y \mod{p} $$
$$ c_1 = g \cdot y \mod{p} $$
$$ c_2 = m \cdot s \mod{p} $$
Nos interesa hallar $m$, que es la flag. Hay que tener en cuenta que ya sabemos $p$, $g$, $h$, $c_1$ y $c_2$.
Resolución del problema
Podemos hallar $y$ fácilmente usando aritmética modular:
$$ y = c_1 \cdot g^{-1} \mod{p} $$
Con este valor, tenemos $s = h ^ y \mod{p}$. Por tanto, hallamos $m$:
$$ m = c_2 \cdot s^{-1} \mod{p} $$
Flag
Todas las operaciones anteriores se pueden hacer en Python. Al final, solamente tenemos que expresar $m$ en formato bytes:
$ python3 -q
>>> p = 163096280281091423983210248406915712517889481034858950909290409636473708049935881617682030048346215988640991054059665720267702269812372029514413149200077540372286640767440712609200928109053348791072129620291461211782445376287196340880230151621619967077864403170491990385250500736122995129377670743204192511487
>>> g = 90013867415033815546788865683138787340981114779795027049849106735163065530238112558925433950669257882773719245540328122774485318132233380232659378189294454934415433502907419484904868579770055146403383222584313613545633012035801235443658074554570316320175379613006002500159040573384221472749392328180810282909
>>> h = 36126929766421201592898598390796462047092189488294899467611358820068759559145016809953567417997852926385712060056759236355651329519671229503584054092862591820977252929713375230785797177168714290835111838057125364932429350418633983021165325131930984126892231131770259051468531005183584452954169653119524751729
>>> (c1, c2) = (159888401067473505158228981260048538206997685715926404215585294103028971525122709370069002987651820789915955483297339998284909198539884370216675928669717336010990834572641551913464452325312178797916891874885912285079465823124506696494765212303264868663818171793272450116611177713890102083844049242593904824396, 119922107693874734193003422004373653093552019951764644568950336416836757753914623024010126542723403161511430245803749782677240741425557896253881748212849840746908130439957915793292025688133503007044034712413879714604088691748282035315237472061427142978538459398404960344186573668737856258157623070654311038584)
>>> y = c1 * pow(g, -1, p) % p
>>> s = pow(h, y, p)
>>> m = c2 * pow(s, -1, p) % p
>>> bytes.fromhex(hex(m)[2:])
b'HTB{b3_c4r3ful_wh3n_1mpl3m3n71n6_cryp705y573m5_1n_7h3_mul71pl1c471v3_6r0up}'