RSA Beginner
2 minutes to read
We are given these numbers:
e: 3
c: 174422460809195453539354885823735245900172562989776845322302
n: 245841236512478852752909734912575581815967630033049838269083
We have the exponent
It is clear that we have an RSA cryptosystem. Let’s review how RSA works:
Two prime numbers
In order to encrypt a message
So that
At this point, the public key is the set
The RSA cryptosystem will be robust as far as the modulus
This time, the modulus
Now that we have
$ python3 -q
>>> e = 3
>>> c = 174422460809195453539354885823735245900172562989776845322302
>>> n = 245841236512478852752909734912575581815967630033049838269083
>>> p = 416064700201658306196320137931
>>> q = 590872612825179551336102196593
>>> phi_n = (p - 1) * (q - 1)
>>> d = pow(e, -1, phi_n)
>>> m = pow(c, d, n)
>>> hex(m)
'0x4354466c6561726e7b7273345f69735f61773373306d337d'
Remember that the message is in numeric format, so we must decode it as ASCII bytes:
>>> bytes.fromhex('4354466c6561726e7b7273345f69735f61773373306d337d')
b'CTFlearn{rs4_is_aw3s0m3}'