Calibrator
6 minutes to read
We are given a remote instance to connect to:
$ nc 165.227.224.40 31139
[OK] Memory check
[OK] Syncing filesystem
[OK] Detecting sensors
[OK] Module loader
[OK] Reading configurations
Inititing calibration process ...
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
ββΌββββββββββββββββββββΌβββββββββββββββββββββββββΌβΌβββββββββββββββββββββββΌβ
ββ XenoCal 2000 β . ββ ββ
ββΌββββββββββββββββββββ€ βββ xββ . . ββ
ββ Iteration: 42 β x βΊ βββ ββ x ββ
ββΌββββββββββ¬ββββββββββ€ ββ ββ
ββ X:1337 β Y:65189 β . x βββββΌβΌββββ ββ
ββΌββββββββββ΄ββββββββββ x βββ ββ βββ x ββ
ββ . βββ ββ βββ ββ
ββ βββ x βΌ ββ . ββ ββ x ββ
ββ βββ . ββ ββ ββ ββ
ββ . β ββ . β ββ
ββΌβββββββββββββββββββββββββββββββββββΌββββββββββΌβΌββββββββββΌβββββββββββββΌβ
ββ x β x ββ β βΌ ββ
ββ x βββΊx ββ ββ ββ ββ
ββ . βΌ ββ ββ ββ . ββ
ββ . βββ ββ βββ ββ
ββ βββ x βββ ββ βββ x ββ
ββ βββ βββ βββ βββββΌβΌββββ ββ
ββ βββ βββ ββ ββ
ββ x . . ββ . ββ
ββ . x ββ x ββ
ββ x βΌ x . ββ x ββ
ββ ββ ββ
ββΌβββββββββββββββββββββββββββββββββββββββββββββΌβΌβββββββββββββββββββββββΌβ
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ ββ
β
βββ¬ββββββββββββββββββββββββββββ¬ββ ββββββββ βββββΌβ
β ββΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβ β β[=()=]β ββββββ€
β ββΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβ β ββββΌβββββββΌβββ β β
β ββΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβ β ββββΌβΌβΌβΌβΌβΌβΌβΌβ€βΊβ β β
β ββΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβ β ββββΌβββββββΌβββ ββββββ€
βββ΄ββββββββββββββββββββββββββββ΄ββ β[=()=]β ββββββ
ββββββββ
Iteration 0:
>
Source code analysis
And we also have the source code in Python:
from FLAG import flag
import random
import math
import time
ITERATIONS = 47
SIDE_LENGTH = 2 * 10 ** 9
ATTEMPTS = 300
HI = SIDE_LENGTH // 2
LO = -SIDE_LENGTH // 2
def banner():
banner = """
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
ββΌββββββββββββββββββββΌβββββββββββββββββββββββββΌβΌβββββββββββββββββββββββΌβ
ββ XenoCal 2000 β . ββ ββ
ββΌββββββββββββββββββββ€ βββ xββ . . ββ
ββ Iteration: 42 β x βΊ βββ ββ x ββ
ββΌββββββββββ¬ββββββββββ€ ββ ββ
ββ X:1337 β Y:65189 β . x βββββΌβΌββββ ββ
ββΌββββββββββ΄ββββββββββ x βββ ββ βββ x ββ
ββ . βββ ββ βββ ββ
ββ βββ x βΌ ββ . ββ ββ x ββ
ββ βββ . ββ ββ ββ ββ
ββ . β ββ . β ββ
ββΌβββββββββββββββββββββββββββββββββββΌββββββββββΌβΌββββββββββΌβββββββββββββΌβ
ββ x β x ββ β βΌ ββ
ββ x βββΊx ββ ββ ββ ββ
ββ . βΌ ββ ββ ββ . ββ
ββ . βββ ββ βββ ββ
ββ βββ x βββ ββ βββ x ββ
ββ βββ βββ βββ βββββΌβΌββββ ββ
ββ βββ βββ ββ ββ
ββ x . . ββ . ββ
ββ . x ββ x ββ
ββ x βΌ x . ββ x ββ
ββ ββ ββ
ββΌβββββββββββββββββββββββββββββββββββββββββββββΌβΌβββββββββββββββββββββββΌβ
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ ββ
β
βββ¬ββββββββββββββββββββββββββββ¬ββ ββββββββ βββββΌβ
β ββΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβ β β[=()=]β ββββββ€
β ββΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβ β ββββΌβββββββΌβββ β β
β ββΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβ β ββββΌβΌβΌβΌβΌβΌβΌβΌβ€βΊβ β β
β ββΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβΌβ β ββββΌβββββββΌβββ ββββββ€
βββ΄ββββββββββββββββββββββββββββ΄ββ β[=()=]β ββββββ
ββββββββ
"""
print(banner)
def load():
boot_messages = \
"""
[\033[92mOK\033[0m] Memory check
[\033[92mOK\033[0m] Syncing filesystem
[\033[92mOK\033[0m] Detecting sensors
[\033[92mOK\033[0m] Module loader
[\033[92mOK\033[0m] Reading configurations
Inititing calibration process ...
""".split('\n')
for m in boot_messages:
print(m)
time.sleep(random.random())
# Calibrator's error acceptance threshold
e = 2
if __name__ == '__main__':
load()
banner()
for i in range(ITERATIONS):
print(f"Iteration {i}:")
R = random.randint(SIDE_LENGTH // 4, SIDE_LENGTH // 2)
X = random.randint(LO + R, HI - R)
Y = random.randint(LO + R, HI - R)
for a in range(ATTEMPTS):
line = input("> ")
x, y = [int(n) for n in line.split(' ')]
D = math.sqrt((X - x) ** 2 + (Y - y) ** 2)
if D <= e:
print("\033[94mREFERENCE", end="\n\033[0m")
break
elif D <= R:
print("\033[92mDETECTED", end="\n\033[0m")
else:
print("\033[91mUNDETECTED", end="\n\033[0m")
else:
exit(0)
print(flag)
The challenge runs 47 iterations, and in each iteration, we are given 300 attempts to input a point $(x, y)$. I didn’t know that for
-else
syntax existed in Python. The else
blocks executes when the for
loop is finished (more information at www.w3schools.com), but not if a break
statement exits the loop.
So, looking again at the challenge code, we need to enter the if
statement where D <= e
, so that break
is called and the server does not call exit(0)
.
Drawing the problem
On each iteration, we must enter a point $(x, y)$. The server has calculated a random point $(X, Y)$ and a random radius $R$ (within a range defined by variables LO
, HI
and SIDE_LENGTH
).
In order to pass the iteration, we must enter a point $(x, y)$ such that $D = \sqrt{(X - x)^2 + (Y - y)^2} \leqslant 2$. If that Euclidean distance is $2 < D \leqslant R$, the server responds DETECTED
. And if $D > R$, then our point $(x, y)$ is UNDETECTED
.
The following figure shows all these sections:
Notice that we don’t know any of $X, Y, R$. We only have an oracle that says DETECTED
, UNDETECTED
to somehow find a point $(x, y)$ that results in REFERENCE
.
Binary search
Since we have only 300 attempts, we must find a quick searching algorithm that allows us to find a REFERENCE
point. Since we have a “binary” oracle (DETECTED
or UNDETECTED
), we will try to find a way to apply binary search.
The objective is to find $X$ and $Y$. We will do it using binary search four times. The first one will be using a point $(x, 0)$ (from 0
to HI
), so that $D = \sqrt{(X - x)^2 + Y^2}$. The result of this binary search will be a value $x_1$ such that $R = \sqrt{(X - x_1)^2 + Y^2}$. Visually, the target point $(x_1, 0)$ will be on the horizontal axis at the right of point $(X, Y)$.
Then, we will do another binary search on point $(x, 0)$ (but with a different range, from LO
to 0
), so that $R = \sqrt{(X - x_2)^2 + Y^2}$. Visually, the target point $(x_2, 0)$ will be on the horizontal axis at the left of point $(X, Y)$.
Analogously, the other two binary search algorithms will output $y_1$ and $y_2$ such that $R = \sqrt{X^2 + (Y - y_1)^2} = \sqrt{X^2 + (Y - y_2)^2}$.
Therefore, we can construct this system of equations:
$$ \begin{cases} X^2 - 2 X x_1 + x_1^2 + Y^2 = R^2 \\ X^2 - 2 X x_2 + x_2^2 + Y^2 = R^2 \\ X^2 + Y^2 - 2 Y y_1 + y_1^2 = R^2 \\ X^2 + Y^2 - 2 Y y_2 + y_2^2 = R^2 \\ \end{cases} $$
Subtracting the first two equations and the last two, we have this reduced system of equations:
$$ \begin{cases} 2 X x_1 - 2 X x_2 + x_2^2 - x_1^2 = 0 \\ 2 Y y_1 - 2 Y y_2 + y_2^2 - y_1^2 = 0 \\ \end{cases} $$
So, we can isolate $X$ and $Y$ as follows:
$$ X = \frac{x_1^2 - x_2^2}{2(x_1 - x_2)} \qquad Y = \frac{y_1^2 - y_2^2}{2(y_1 - y_2)} $$
Once we know the point $(X, Y)$, we can enter a point $(x, y)$ such that $D = \sqrt{(X - x)^2 + (Y - y)^2} \leqslant 2$ and follow to the next iteration. This process repeats 47 times.
Flag
After programming the above procedure, we execute the script and eventually find the flag:
$ python3 solve.py 165.227.224.40:31139
[+] Opening connection to 165.227.224.40 on port 31139: Done
[+] Round: Done
[+] HTB{b1n4ry_s34rch_15_und3rr4t3d}
[*] Closed connection to 165.227.224.40 port 31139
The full script can be found in here: solve.py
.