Mayday Mayday
5 minutes to read
We are given the Python source code to encrypt the flag:
from Crypto.Util.number import getPrime, GCD, bytes_to_long
from secret import FLAG
from random import randint
class Crypto:
def __init__(self, bits):
self.bits = bits
self.alpha = 1/9
self.delta = 1/4
self.known = int(self.bits*self.delta)
def keygen(self):
while True:
p, q = [getPrime(self.bits//2) for _ in '__']
self.e = getPrime(int(self.bits*self.alpha))
φ = (p-1)*(q-1)
try:
dp = pow(self.e, -1, p-1)
dq = pow(self.e, -1, q-1)
self.n = p*q
break
except:
pass
return (self.n, self.e), (dp, dq)
def encrypt(self, m):
return pow(m, self.e, self.n)
rsa = Crypto(2048)
_, (dp, dq) = rsa.keygen()
m = bytes_to_long(FLAG)
c = rsa.encrypt(m)
with open('output.txt', 'w') as f:
f.write(f'N = 0x{rsa.n:x}\n')
f.write(f'e = 0x{rsa.e:x}\n')
f.write(f'c = 0x{c:x}\n')
f.write(f'dp = 0x{(dp >> (rsa.bits//2 - rsa.known)):x}\n')
f.write(f'dq = 0x{(dq >> (rsa.bits//2 - rsa.known)):x}\n')
And we have the result in output.txt
:
N = 0x78fb80151a498704541b888b9ca21b9f159a45069b99b04befcb0e0403178dc243a66492771f057b28262332caecc673a2c68fd63e7c850dc534a74c705f865841c0b5af1e0791b8b5cc55ad3b04e25f20dedc15c36db46c328a61f3a10872d47d9426584f410fde4c8c2ebfaccc8d6a6bd1c067e5e8d8f107b56bf86ac06cd8a20661af832019de6e00ae6be24a946fe229476541b04b9a808375739681efd1888e44d41196e396af66f91f992383955f5faef0fc1fc7b5175135ab3ed62867a84843c49bdf83d0497b255e35432b332705cd09f01670815ce167aa35f7a454f8b26b6d6fd9a0006194ad2f8f33160c13c08c81fe8f74e13e84e9cdf6566d2f
e = 0x4b3393c9fe2e50e0c76920e1f34e0c86417f9a9ef8b5a3fa41b381355
c = 0x17f2b5a46e4122ff819807a9d92b6225c483cf93c9804381098ecd6b81f4670e94d8930001b760f1d26bc7aa7dda48c9e12809d20b33fdb4c4dd9190b105b7dab42e932b99aaff54023873381e7387f1b2b18b355d4476b664d44c40413d82a10635fe6e7322543943aed2dcfbe49764b8da70edeb88d6f63ee47f025be5f2f38319611ab74cd5db6f90f60870ecbb57a884f821d873db06aadf0e61ff74cc7d4c8fc1e527dba9b205220c6707f750822c675c530f8ad6956e41ab80911da49c3d6a7d27e93c44ba5968f2f47a9c5a2694c9d6da245ceffe9cab66b6043774f446b1b08ee4739d3cc716b87c8225a84d3c4ea2fdf68143d09f062c880a870554
dp = 0x59a2219560ee56e7c35f310a4d101061aa61e0ae4eae7605eb63784209ad488b4ed161e780811edd61bf593e2d385beccfd255b459382d8a9029943781b540e7
dq = 0x39719131fbfd8afbc972ca005a430d080775bf1a5b3e8b789aba5c5110a31bd155ff13fba1019bb6cb7db887685e34ca7966a891bfad029b55b92c11201559e5
Source code analysis
The server uses RSA to encrypt the flag. We are given
where
The server also computes the private exponents for RSA-CRT decryption:
Those are 1024-bit numbers, but we are only given the upper 512 bits, let’s say
The above
Coppersmith method
When the challenge removes some bits, probably the solution is related to Coppersmith method, trying to recover small roots of a polynomial modulo a composite number.
Doing the math
We know that
So, we have:
And so
We can obtain a nice approximation of
This number
We have
Tweaking the polynomial
We can narrow the search space with this condition:
So, we can redefine the polynomial as
And now
SageMath implementation
First of all, we compute
with open('output.txt') as f:
n = int(f.readline().split(' = ')[1], 16)
e = int(f.readline().split(' = ')[1], 16)
c = int(f.readline().split(' = ')[1], 16)
dp_hint = int(f.readline().split(' = ')[1], 16) << 512
dq_hint = int(f.readline().split(' = ')[1], 16) << 512
kp_kq = (e * dp_hint - 1) * (e * dq_hint - 1) // n + 1
divs = divisors(kp_kq)
Since
possible_kp_kq = set()
for div in divs:
kp, kq = div, kp_kq // div
pH = (e * (dp_hint + 2 ** 512) - 1 + kp) // kp
pL = (e * (dp_hint + 0) - 1 + kp) // kp
qH = (e * (dq_hint + 2 ** 512) - 1 + kq) // kq
qL = (e * (dq_hint + 0) - 1 + kq) // kq
if all(int(x).bit_length() == 1024 for x in [pH, pL, qH, qL]):
possible_kp_kq.add((kp, kq))
Now, we find the extra value
x = PolynomialRing(Zmod(n), 'x').gens()[0]
for kp, kq in possible_kp_kq:
d_kp = int((pow(e, -1, kp) - dp_hint) % kp)
P = (e * (dp_hint + kp * x + d_kp) - 1 + kp).monic()
roots = P.small_roots(beta=0.5)
if roots and roots[0] != n:
p = int((e * (dp_hint + kp * roots[0] + d_kp) - 1 + kp) // kp)
assert n % p == 0
q = n // p
d = pow(e, -1, (p - 1) * (q - 1))
m = pow(c, d, n)
print(bytes.fromhex(hex(m)[2:]).decode())
break
Flag
And this is the flag. It references a paper to perform the intended attack, which is based on Coppersmith method too:
$ python3 solve.py
HTB{f4ct0r1ng_w1th_just_4_f3w_b1ts_0f_th3_CRT_3xp0n3nts!https://eprint.iacr.org/2022/271.pdf}
The full script can be found in here: solve.py
.