Quadratic Leak
3 minutes to read
We are given the Python source code to encrypt the flag:
from Crypto.PublicKey import RSA
from Crypto.Util.number import long_to_bytes, bytes_to_long
flag = b'ptm{REDACTED}'
flag = bytes_to_long(flag)
key = RSA.generate(2048)
n = key.n
e = key.e
p, q = key.p, key.q
leak = (p**2 + q**2 - p - q)%key.n
ciph = pow(flag, key.e, key.n)
ciph = long_to_bytes(ciph)
print(f'{n = }')
print(f'{e = }')
print(f'{ciph = }')
print(f'{leak = }')
And we have the output of the script in output.txt
:
n = 18981841105895636526675685852772632158842968216380018810386298633786155635996081803989776444322885832862508871280454015266715098097212762303823817669399277859053310692838636039765017523835850272300243126797277954387477501506925762258179024160726332434715115654485883242651742714579029928789693932848304595300833348009779987606253681750351002940239431890559231554840489325837351081804589516122959648786979395257143753954514874848903523580352634665455711644772319481340052722305319056316013353993453687301538982087215697860640865435677605005049256026879380517059221652220476972139202570771113865372482940490650024591211
e = 65537
ciph = b'/>\xf0a\xe4\x95a\xb8!h\x11[\xa01\xa2\x08\xd2\xa0\xd7G\xb0CU`\x97\xc7\xa2\xe9\x94\x10=\xf7\xd6y{\x01u\xcbl\xe1\x7f\x8d\xa0\xd8_\xba\x8a\xd9\x85\xc1\xcc\rK\xc7\xb6\xfb.(\x99%\x1f\x0b\xeci\nR\x8b\xcc>\x86\x18\xe1ie\x19\x9dI\xda\x9bNh8N\xe5\xf2\xf3kP\xeb\x02d\xdei\xadd\xa0\x17WKs~3ohp\xeb\x83\x17>[\x87K\xd1\x0e>\xf6\xeeR\x08\xc4y\x9c\xc7\xbf\xdaq\x9a\xff\x99EQSg\x04"H\xc0=\xfc\x1b\xdcA\x95\xb9\x15m\xe6\x04N\x81%\xda\xa5\xb2P\x02\xbb\xb9\x83\xbf\xcfR\xffe\x0fT\xd9=f\xc1\xab\xd3:\xfb\xf8k\xc0\xd1]V\xc6pK\x86T\xfe\xd5\xadb\x7f\x1b\xb1\x9d9\xe51\xb8\'BY\xcb\x934\x1e\xfb\xc8\x96V4\x0f\xb3\xe4\xd9\x92e;v\x88\x8e\x16\x14?\xe9ew\x95\x8c\xa2\xfc\xc3\xf7,\xd50\xc3@\x11|\x8a\xe0\xee\xf3u\xa0\x8a_?A2[\xad\x8e\x81\x99\xf0\r'
leak = 110277838449088002585424592968018361142419851286027284241723700708406129526007148628583636124051067276081936889565484783806534793568491888186904160969266846545579940493300734427497600123059580090561311191997050900418560468769108541786093143743441372956591688646550593311523980201035231511541259853198512190703006995530566933548862787123808685889850952840156903871573965022335639190635103252052979042642912530238710466180279568731038056810280199578414064760950459385877300845399348928704648108281000674478903445454838155321984920936780746021819652974978142789457099370813760033995294668404782700700352547809925049256
Source code analysis
The code is straightforward. It implements a text-book RSA with 1024-bit primes
In addition, we are given a leak
, which is the value of
We must use the value of leak
to find the primes
Solution
Notice that
For some small
For instance, we can isolate
We know that
As a result, we can test several
Implementation
We can use SageMath in a REPL directly:
$ sage -q
sage: with open('output.txt') as f:
....: exec(f.read())
....:
sage: P.<x> = PolynomialRing(ZZ)
sage: k = 0
sage:
sage: while True:
....: h = leak + k * n
....: if (roots := (x ** 4 - x ** 3 - h * x ** 2 - n * x + n ** 2).roots()):
....: (p, _), (q, _) = roots
....: break
....: k += 1
....:
sage: k
2
sage: n == p * q and 1 < p < n and 1 < q < n
True
Flag
At this point, we can decrypt RSA the usual way to get the flag:
sage: phi_n = (p - 1) * (q - 1)
sage: d = pow(e, -1, phi_n)
sage: c = int(ciph.hex(), 16)
sage: m = pow(c, d, n)
sage: bytes.fromhex(hex(m)[2:])
b'ptm{Nonlinear_Algebra_Preserved_Over_Large_Integers}'